Literate Programw

“ |

in the

Twenty -first C{ nt
¢ Wne ! |<

‘I

Howard Abrams
www.howardism.org
@howardabrams

http://www.howardism.org
http://www.howardism.org

Thesis

Let us change our traditional attitude
to the construction of programs.
Instead of imagining that our main
task is to instruct a computer what
to do, let us concentrate rather on
explaining to human beings
what we want a computer to do.

—PDonald Knuth

" The programmer's task is to state [the]
parts and relationships, in whatever order is
best for human comprehension not in some

rigidly determined order like top-down or
bottom-up.

—Donald Knuth

Computer programming is an art...
especially because it produces
objects of beauty. A programmer
who subconsciously views himself
as an artist will enjoy what he does
and will do it better.

—PDonald Knuth

l"'u ;'“, ' l .| f"'l r". r"n

2

010111010001
100111100110
101010010010

101010100101
| 101010111001
101011010100
011110011010

010111010001

100111100110
101010010010
101010100101
101010111001
101011010100

Tangling

010111010001
100111100110
101010010010
101010100101
| 101010111001
101011010100

111010

Tangling Weaving
010111010001
100111100110
101010010010
101010100101
| 101010111001
101011010100

111010

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

long total word count,
total line count,
total char count;

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

long total word count,
total line count,
total char count;

Start of code block marker

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

long total word count,
total line count,
total char count;

End of code block

Start of code block marker

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

long total word count,
total line count,
total char count;

End of code block Code

Start of code block marker

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

long tqdqtal word count,
todal line count,
tota\ char count;

Name of
Code block

End of code block Code

Start of code block marker

We must include the standard I/0
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total word count,
total line count,
total char count;

The purpose of wc is to count lines,
words, and/or characters in a list of
We must include the standard /0 fj]l@s. The number of lines in a file is ...

definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>= Here, then, is an overview of the file

long total word count,

total line count, wc.c that is defined by the noweb

total char count;

: program WC.nw:

<<*>>=
<<Header files to include>>
<<Definitions>>
<<Global variables>>
<<Functions>>
<<The main program>>

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file

We must include the standard I/0 we.c that is defined by the noweb

definitions, since we want to send program wcC.nw:

formatted output to stdout and stderr.

<<Global variables>>= S<HE>>=

long total word count, <<Header files to include>>
total line count, <<Definitions>>
total char count; .

e - - <<Global variables>>

<<Functions>>

<<The main program>>

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file

We must include the standard I/0 wec.c that is defined by the noweb
definitions, since we want to send program wc.nw:
formatted output to stdout and stderr.
<<Global variables>>= S<HE>>=
long total word count, <<Header files to include>>
1 1i e e,
total line count, <<Definitions>>
total char count; .
e <<Global variables>>
<<Functions>>

<<The main program>>

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file

We must include the standard I/0 wec.c that is defined by the noweb
definitions, since we want to send program wc.nw:
formatted output to stdout and stderr.
<<Global variables>>= S<HE>>=
long total word count, <<Header files to include>>
1 1i e e,
total line count, <<Definitions>>
total char count; .
e <<Global variables>>
<<Functions>>

<<The main program>>

<<Functions>>=
<<Count words 1in array>>
<<Separate words>>
<<Is punctuation?>>

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file

We must include the standard I/0 wec.c that is defined by the noweb
definitions, since we want to send program wc.nw:
formatted output to stdout and stderr.
<<Global variables>>= <<HESS>=
long total word count, <<Header files to include>>

total line count, <<Definitions>>

total char count; .
e <<Global variables>>

<<Functions>>
<<Count words 1in array>>= <<The main program=>>
/] ... @
@
<<Functions>>=

<<Count words 1in array>>
<<Separate words>>= a <<Separate words>>

@//... <<Is punctuation?>>

@

<<Is punctuation?>>=
// e o o
@

Literate Programming

Donald E. Knuth

Computer Science Department, gtanford University, Stanford, CA 94305, USA

The author and his associates have been experimenting for the past several years with a program-
ming language and documentation system called WEB. This paper presents WEB by example, and
discusses why the new system appears to be an improvement over previous ones.

A. INTRODUCTION

The past ten years have witnessed substantial improve-
ments in programming methodology. This advance,
carried out under the banner of “gtructured program-
ming,” has led to programs that are more reliable and
easier to comprehend; yet the results are not entirely
satisfactory. My purpose in the present paper is to
propose another motto that may be appropriate for the
next decade, as we attempt to make further progress
in the state of the art. I believe that the time is ripe
for significantly better documentation of programs, and
that we can best achieve this by considering programs
to be works of literature. Hence, my title: “Literate
Programm'mg."’

Let us change our traditional attitude to the con-
struction of programs: Instead of imagining that our
main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings what
we want a computer to do.

R e g e e S SR e e

I would ordinarily have assigned to student research
assistants; and why? Because it seems to me that at last
I'm able to write programs as they should be written.
My programs are not only explained better than ever
before; they also are better programs, because the new
methodology encourages me to do a better job. For
these reasons 1 am compelled to write this paper, In
hopes that my experiences will prove to be relevant to
others.

I must confess that there may also be a bit of mal-
ice in my choice of a title. During the 1970s I was
coerced like everybody else Into adopting the ideas of
structured programming, because I couldn’t bear to be
found guilty of writing unstructured programs. Now I
have a chance to get evell. By coining the phrase “liter-
ate programming,” [am imposing a moral commitment
on everyone who hears the term; surely nobody wants

to admit writing an illiterate program.

B. THE WEB SYSTEM

Literate Programming

Donald E. Knuth

nce Department, Qtanford University, Stanford, CA

Computer Scie

The author and his associates have been experimenting
d documentation system called WEB.

ming language an
discusses why the new gystem appears to be an impro

A. INTRODUCTION

The past ten years have witnessed substantial improve-
ments in programming methodology. This advance,
carried out under the banner of “gtructured program-
ming,” has led to programs that are more reliable and
easier to comprehend; yet the results are not entirely
ose in the present paper is to
propose another motto that may be appropriate for the
next decade, as we attempt to make further progress
in the state of the art. I believe that the time is ripe
for significantly better documentation of programs, an
that we can best achieve this by considering programs
to be works of literature. Hence, my title: “Literate

Programming.”

Let us change our tr
struction of programs:
main task is to instruc
concentrate rather on exp

we want a computer to do.
st g e s ena AR I (CRT) be re- B. THE WEB SYSTEM

aditional attitude to the con-
Instead of imagining that our
t a computer what to do, let us
laining to human beings what

Antithesis

A wise engineering solution would
produce—or better, exploit—reusable parts.
—Doug Mcllory

A wise engineering solution would
produce—or better, exploit—reusable parts.
—Doug Mcllory

tr -cs A-Za-z '\n' |
tr A-Z a-z |

sort |
uniqg -c |
sort -rn |

sed ${1}qg

A wise engineering solution would
produce—or better, exploit—reusable parts.
—Doug Mcllory

tr -cs A-Za-z '\n' |
tr A-Z a-z |

o 3 S
uniq -c | a0 k.
50\0\6' Xn 1 \Z
sort -rn | eV u pe

sed ${1}q o

Better thinking
through
better tools

Code re-use

Influences

Javadoc System
Docco

iPython Notebook
Haskell

Embraced by Cryptic Languages

http://aanandprasad.com/articles/negronis/

The Abstracted Negroni

['his post is written in literate javascript. You can download it here and run it

at the command line thus: cat negronis.litjs | egrep 'A {4}' | node

| was out last Friday at a bar where they had a "Negroni Tic-Tac-
Toe" offer—you could custom-build your drink from a selection of 3
gins, 3 vermouths and 3 amari, and if you got "3 in arow” you'd get

£5 off your bill. It's a laughably stingy deal, but it got me thinking.
About programming, | mean.

function Negroni(gin, vermouth, amaro) {
this.gin = gin;
this.vermouth = vermouth;

this.amaro = amaro;

http://aanandprasad.com/articles/negronis/
http://aanandprasad.com/articles/negronis/

http://aanandprasad.com/articles/negronis/

The Abstracted Negroni

This <t 1s written in literate 1avascrir ‘v can download it here and riin it
['his post is written ir \I[L,;[L-JL,:’L;L_HQ_[.,},CLJ arclagele)lvy f here andrun it
at the command line thy%: cat negronis.litjs | egrep 'A {4}°

| was out last Friday at a bar where they had a "Negroni Tic-Tac-
Toe" offer—you could custom-build your drink from a selection of 3
gins, 3 vermouths and 3 amari, and if you got "3 in arow” you'd get
£5 off your bill. It's a laughably stingy deal, but it got me thinking.
About programming, | mean.

function Negroni(gin, vermouth, amaro) {
this.gin = gin;
this.vermouth = vermouth;

this.amaro = amaro;

http://aanandprasad.com/articles/negronis/
http://aanandprasad.com/articles/negronis/

I P [yl: Note b 00 k 07- Making Functions Last saved: Jun 10 4:44 PM

File Edit View Insert Cell Kernel Help

- . Markdown %

[

B X ® O T ‘ *

Parameters

A parameter (we sometimes call them arguments) are things we can pass into a function. For instance:

In [5]: def hello(name):
print "Hello", name

hello("Charlie")

Hello Charlie

You can pass in more than one thing into a **function** if you separate them with commas:

In [7]: def larger(a, b):
if a < b:
print a, "is less than", b

elif a > b:
print a, "is greater than", b

else:
print a, "is the same as", b

larger(3, 5)

3 is less than 5

IPIyl: Notebook 07- Making Functions Last saved: Jun 10 4:44 PM
l File Edit View Insert Cell Kernel Help

B 4 ® 0 t 'l . . - . Markdown 4%

. Parameters + A page is a series

: - of “cells”

I A parameter (we sometimes call them arguments) are things we can ;flass into a function. For instance:
0

In [5]: def hello(name):
print "Hello", name

|
|
|
|
hello("Charlie") .
|
0

. Hello Charlie

' You can pass in more than one thing into a **function** if you separate them with commas: !

[7]: def larger(a, b): !

if a < b:

print a, "is less than", b
elif a > b:

print a, "is greater than", b
else:

print a, "is the same as", b

H
e

larger(3, 5)

3 is less than 5

I P [yl: Note b 00 k 07- Making Functions Last saved: Jun 10 4:44 PM

File Edit View Insert Cell Kernel Help

[

e X ™ 0 t } * - . Markdown %

Parameters

A parameter (we sometimes call them arguments) are things we can pass into a function. For instance:

T e e “Helic" name — Executed code is

hello("Charlie") dlSPla)’Ed be|OW
Hello Charlie
You can pass in more than one thing into a **function** if you separate them with commas:

In [7]: def larger(a, b):
if a < b:
print a, "is less than", b

elif a > b:
print a, "is greater than", b

else:
print a, "is the same as", b

larger(3, 5)

3 is less than 5

I P [yl: Note b 00 k 07- Making Functions Last saved: Jun 10 4:44 PM

File Edit View Insert Cell Kernel Help

[

e X ™ 0 t } * - . Markdown %

Parameters

A parameter (we sometimes call them arguments) are things we can pass into a function. For instance:

In [5]: def hello(name):
print "Hello", name

hello("Charlie")

Hello Charlie

You can pass in more than one thing into a **function** if you separate them withjcommas:

In [7]: def larger(a, b): \ .
if a < b Cells can contain text

print a, "is less than", b

A e reater thant. b in Markdown format,
else: - . .
print a, "is the same as", b Wthh IS aUtOmatlca”)’
larger(3, 5) rendered.

3 is less than 5

Synthesis

What is Needed!?

Good text processing and programming
ldentify and separate source code snippets
Code block evaluation support

Link and reference code block snippets
Use evaluated code output

Render both code and documentation

 |n the third millenium, does it still make
~sense to work with text files? Text files
are the only truly portable format for
files. The data will never get lost.
—Carsten Dominik

Tangling Weaving
010111010001
100111100110
101010010010
101010100101
| 101010111001
101011010100

111010

|"""| l"'""u I""". "l"'l ."l"'l n"'"i |""'| I""“l

2

Tangling

Weaving

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100

 11010

J
<

Connect to Interpreters

Lists, tables and
textual data fed
in as variables

Lists, tables and
textual data fed
in as variables

Results of
running code
inserted as data

Results of that

code given as
variables to other

code blocks

A complex piece of
software is best regarded
as a web of ideas that has

been delicately pieced

together from simple

materials.
—Knuth

Knuth originally
interconnected code.

N\ YAY X117

interconnect both
code and data in a
literate way.

The Toolbox

Emacs

Language Modes Graphviz/PlantUML REPL Connectors

Demonstration

Possible Uses

Learning a new language ® Combining code with its
or technology tests

Better REPL for non- ® Easier to brain-storm
interactive languages over complex analysis
Problems require ® Describe complex code:

multiple languages .
P 5% ® Regular Expressions

Embedded UML or ® (Odd inheritance trees
other diagrams e SOL and ORM

Ouestions?

Links to this presentation and other
bookmarks available at either this

URL or scan this QR code:
http://is.gd/XPGMR6

http://is.gd/XPGMR6
http://is.gd/XPGMR6

