
Literate Programming
in the

Twenty-first Century

Howard Abrams
www.howardism.org
@howardabrams

http://www.howardism.org
http://www.howardism.org

Thesis

Let us change our traditional attitude
to the construction of programs.
Instead of imagining that our main
task is to instruct a computer what
to do, let us concentrate rather on
explaining to human beings
what we want a computer to do.

—Donald Knuth

The programmer's task is to state [the]
parts and relationships, in whatever order is
best for human comprehension not in some
rigidly determined order like top-down or
bottom-up.

—Donald Knuth

—Donald Knuth

Computer programming is an art…
especially because it produces
objects of beauty. A programmer
who subconsciously views himself
as an artist will enjoy what he does
and will do it better.

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

Tangling

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

Tangling Weaving

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

Start of code block marker

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

Start of code block marker

End of code block

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

Start of code block marker

End of code block Code

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

Start of code block marker

End of code block Code

Name of
Code block

Global variables

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file
wc.c that is defined by the noweb
program wc.nw:

<<*>>=
 <<Header files to include>>
 <<Definitions>>
 <<Global variables>>
 <<Functions>>
 <<The main program>>
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file
wc.c that is defined by the noweb
program wc.nw:

<<*>>=
 <<Header files to include>>
 <<Definitions>>
 <<Global variables>>
 <<Functions>>
 <<The main program>>
@

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file
wc.c that is defined by the noweb
program wc.nw:

<<*>>=
 <<Header files to include>>
 <<Definitions>>
 <<Global variables>>
 <<Functions>>
 <<The main program>>
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file
wc.c that is defined by the noweb
program wc.nw:

<<*>>=
 <<Header files to include>>
 <<Definitions>>
 <<Global variables>>
 <<Functions>>
 <<The main program>>
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

<<Functions>>=
 <<Count words in array>>
 <<Separate words>>
 <<Is punctuation?>>
@

The purpose of wc is to count lines,
words, and/or characters in a list of
files. The number of lines in a file is ...

Here, then, is an overview of the file
wc.c that is defined by the noweb
program wc.nw:

<<*>>=
 <<Header files to include>>
 <<Definitions>>
 <<Global variables>>
 <<Functions>>
 <<The main program>>
@

We must include the standard I/O
definitions, since we want to send
formatted output to stdout and stderr.

<<Global variables>>=
long total_word_count,
 total_line_count,
 total_char_count;
@

<<Functions>>=
 <<Count words in array>>
 <<Separate words>>
 <<Is punctuation?>>
@

<<Count words in array>>=
 // ...
@

<<Is punctuation?>>=
 // ...
@

<<Separate words>>=
 // ...
@

Antithesis

A wise engineering solution would
produce—or better, exploit—reusable parts.

—Doug McIlory

A wise engineering solution would
produce—or better, exploit—reusable parts.

—Doug McIlory

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}q

A wise engineering solution would
produce—or better, exploit—reusable parts.

—Doug McIlory

tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}q

It's f
unny,

it's

reusa
ble, a

nd it
wildly

misses
Knuth

's poi
nt.

—Po Pe
tz

Donald KnuthDoug McIlroy

Code re-use Better thinking
through

better tools

Influences

• Javadoc System

• Docco

• iPython Notebook

• Haskell

• Embraced by Cryptic Languages

http://aanandprasad.com/articles/negronis/

http://aanandprasad.com/articles/negronis/
http://aanandprasad.com/articles/negronis/

http://aanandprasad.com/articles/negronis/

http://aanandprasad.com/articles/negronis/
http://aanandprasad.com/articles/negronis/

A page is a series
of “cells”

Executed code is
displayed below

Cells can contain text
in Markdown format,
which is automatically

rendered.

Synthesis

What is Needed?

• Good text processing and programming

• Identify and separate source code snippets

• Code block evaluation support

• Link and reference code block snippets

• Use evaluated code output

• Render both code and documentation

In the third millenium, does it still make
sense to work with text files? Text files
are the only truly portable format for
files. The data will never get lost.

—Carsten Dominik

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

Tangling Weaving

010111010001
100111100110
101010010010
101010100101
101010111001
101011010100
011110011010

Tangling Weaving

Connect to Interpreters

REPL

Pros
e

Pros
e

Pros
e

Pros
e

Code

Code

Code

Lists, tables and
textual data fed
in as variables

Lists, tables and
textual data fed
in as variables

Results of
running code
inserted as data

Results of that
code given as
variables to other
code blocks

A complex piece of
software is best regarded
as a web of ideas that has

been delicately pieced
together from simple

materials.
—Knuth

Knuth originally
interconnected code.

Now we can
interconnect both
code and data in a

literate way.

Emacs

The Toolbox

Language Modes Graphviz/PlantUML REPL Connectors

org-mode

Babel

Demonstration

Possible Uses
• Learning a new language

or technology

• Better REPL for non-
interactive languages

• Problems require
multiple languages

• Embedded UML or
other diagrams

• Combining code with its
tests

• Easier to brain-storm
over complex analysis

• Describe complex code:

• Regular Expressions

• Odd inheritance trees

• SQL and ORM

Questions?

http://is.gd/XPGMR6

Links to this presentation and other
bookmarks available at either this

URL or scan this QR code:

http://is.gd/XPGMR6
http://is.gd/XPGMR6

